3.4.93 \(\int \frac {\cos ^3(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx\) [393]

3.4.93.1 Optimal result
3.4.93.2 Mathematica [A] (verified)
3.4.93.3 Rubi [A] (verified)
3.4.93.4 Maple [B] (verified)
3.4.93.5 Fricas [A] (verification not implemented)
3.4.93.6 Sympy [F(-1)]
3.4.93.7 Maxima [B] (verification not implemented)
3.4.93.8 Giac [F]
3.4.93.9 Mupad [F(-1)]

3.4.93.1 Optimal result

Integrand size = 26, antiderivative size = 307 \[ \int \frac {\cos ^3(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx=\frac {3003 i \text {arctanh}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{16384 \sqrt {2} a^{7/2} d}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}+\frac {13 i \cos ^3(c+d x)}{160 a d (a+i a \tan (c+d x))^{5/2}}+\frac {143 i \cos ^3(c+d x)}{1920 a^2 d (a+i a \tan (c+d x))^{3/2}}+\frac {1001 i \cos (c+d x)}{8192 a^3 d \sqrt {a+i a \tan (c+d x)}}+\frac {429 i \cos ^3(c+d x)}{5120 a^3 d \sqrt {a+i a \tan (c+d x)}}-\frac {3003 i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{16384 a^4 d}-\frac {1001 i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{10240 a^4 d} \]

output
3003/32768*I*arctanh(1/2*sec(d*x+c)*a^(1/2)*2^(1/2)/(a+I*a*tan(d*x+c))^(1/ 
2))/a^(7/2)/d*2^(1/2)+1001/8192*I*cos(d*x+c)/a^3/d/(a+I*a*tan(d*x+c))^(1/2 
)+429/5120*I*cos(d*x+c)^3/a^3/d/(a+I*a*tan(d*x+c))^(1/2)-3003/16384*I*cos( 
d*x+c)*(a+I*a*tan(d*x+c))^(1/2)/a^4/d-1001/10240*I*cos(d*x+c)^3*(a+I*a*tan 
(d*x+c))^(1/2)/a^4/d+1/10*I*cos(d*x+c)^3/d/(a+I*a*tan(d*x+c))^(7/2)+13/160 
*I*cos(d*x+c)^3/a/d/(a+I*a*tan(d*x+c))^(5/2)+143/1920*I*cos(d*x+c)^3/a^2/d 
/(a+I*a*tan(d*x+c))^(3/2)
 
3.4.93.2 Mathematica [A] (verified)

Time = 2.97 (sec) , antiderivative size = 175, normalized size of antiderivative = 0.57 \[ \int \frac {\cos ^3(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx=-\frac {\left (42140+20048 e^{-2 i (c+d x)}+71190 e^{2 i (c+d x)}+5856 e^{-4 i (c+d x)}-48640 e^{4 i (c+d x)}+768 e^{-6 i (c+d x)}-2560 e^{6 i (c+d x)}+\frac {90090 e^{4 i (c+d x)} \text {arctanh}\left (\sqrt {1+e^{2 i (c+d x)}}\right )}{\sqrt {1+e^{2 i (c+d x)}}}\right ) \sec ^3(c+d x)}{491520 a^3 d (-i+\tan (c+d x))^3 \sqrt {a+i a \tan (c+d x)}} \]

input
Integrate[Cos[c + d*x]^3/(a + I*a*Tan[c + d*x])^(7/2),x]
 
output
-1/491520*((42140 + 20048/E^((2*I)*(c + d*x)) + 71190*E^((2*I)*(c + d*x)) 
+ 5856/E^((4*I)*(c + d*x)) - 48640*E^((4*I)*(c + d*x)) + 768/E^((6*I)*(c + 
 d*x)) - 2560*E^((6*I)*(c + d*x)) + (90090*E^((4*I)*(c + d*x))*ArcTanh[Sqr 
t[1 + E^((2*I)*(c + d*x))]])/Sqrt[1 + E^((2*I)*(c + d*x))])*Sec[c + d*x]^3 
)/(a^3*d*(-I + Tan[c + d*x])^3*Sqrt[a + I*a*Tan[c + d*x]])
 
3.4.93.3 Rubi [A] (verified)

Time = 1.49 (sec) , antiderivative size = 331, normalized size of antiderivative = 1.08, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.654, Rules used = {3042, 3983, 3042, 3983, 3042, 3983, 3042, 3983, 3042, 3978, 3042, 3983, 3042, 3971, 3042, 3970, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^3(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sec (c+d x)^3 (a+i a \tan (c+d x))^{7/2}}dx\)

\(\Big \downarrow \) 3983

\(\displaystyle \frac {13 \int \frac {\cos ^3(c+d x)}{(i \tan (c+d x) a+a)^{5/2}}dx}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {13 \int \frac {1}{\sec (c+d x)^3 (i \tan (c+d x) a+a)^{5/2}}dx}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3983

\(\displaystyle \frac {13 \left (\frac {11 \int \frac {\cos ^3(c+d x)}{(i \tan (c+d x) a+a)^{3/2}}dx}{16 a}+\frac {i \cos ^3(c+d x)}{8 d (a+i a \tan (c+d x))^{5/2}}\right )}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {13 \left (\frac {11 \int \frac {1}{\sec (c+d x)^3 (i \tan (c+d x) a+a)^{3/2}}dx}{16 a}+\frac {i \cos ^3(c+d x)}{8 d (a+i a \tan (c+d x))^{5/2}}\right )}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3983

\(\displaystyle \frac {13 \left (\frac {11 \left (\frac {3 \int \frac {\cos ^3(c+d x)}{\sqrt {i \tan (c+d x) a+a}}dx}{4 a}+\frac {i \cos ^3(c+d x)}{6 d (a+i a \tan (c+d x))^{3/2}}\right )}{16 a}+\frac {i \cos ^3(c+d x)}{8 d (a+i a \tan (c+d x))^{5/2}}\right )}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {13 \left (\frac {11 \left (\frac {3 \int \frac {1}{\sec (c+d x)^3 \sqrt {i \tan (c+d x) a+a}}dx}{4 a}+\frac {i \cos ^3(c+d x)}{6 d (a+i a \tan (c+d x))^{3/2}}\right )}{16 a}+\frac {i \cos ^3(c+d x)}{8 d (a+i a \tan (c+d x))^{5/2}}\right )}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3983

\(\displaystyle \frac {13 \left (\frac {11 \left (\frac {3 \left (\frac {7 \int \cos ^3(c+d x) \sqrt {i \tan (c+d x) a+a}dx}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\right )}{4 a}+\frac {i \cos ^3(c+d x)}{6 d (a+i a \tan (c+d x))^{3/2}}\right )}{16 a}+\frac {i \cos ^3(c+d x)}{8 d (a+i a \tan (c+d x))^{5/2}}\right )}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {13 \left (\frac {11 \left (\frac {3 \left (\frac {7 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sec (c+d x)^3}dx}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\right )}{4 a}+\frac {i \cos ^3(c+d x)}{6 d (a+i a \tan (c+d x))^{3/2}}\right )}{16 a}+\frac {i \cos ^3(c+d x)}{8 d (a+i a \tan (c+d x))^{5/2}}\right )}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3978

\(\displaystyle \frac {13 \left (\frac {11 \left (\frac {3 \left (\frac {7 \left (\frac {5}{6} a \int \frac {\cos (c+d x)}{\sqrt {i \tan (c+d x) a+a}}dx-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\right )}{4 a}+\frac {i \cos ^3(c+d x)}{6 d (a+i a \tan (c+d x))^{3/2}}\right )}{16 a}+\frac {i \cos ^3(c+d x)}{8 d (a+i a \tan (c+d x))^{5/2}}\right )}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {13 \left (\frac {11 \left (\frac {3 \left (\frac {7 \left (\frac {5}{6} a \int \frac {1}{\sec (c+d x) \sqrt {i \tan (c+d x) a+a}}dx-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\right )}{4 a}+\frac {i \cos ^3(c+d x)}{6 d (a+i a \tan (c+d x))^{3/2}}\right )}{16 a}+\frac {i \cos ^3(c+d x)}{8 d (a+i a \tan (c+d x))^{5/2}}\right )}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3983

\(\displaystyle \frac {13 \left (\frac {11 \left (\frac {3 \left (\frac {7 \left (\frac {5}{6} a \left (\frac {3 \int \cos (c+d x) \sqrt {i \tan (c+d x) a+a}dx}{4 a}+\frac {i \cos (c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}\right )-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\right )}{4 a}+\frac {i \cos ^3(c+d x)}{6 d (a+i a \tan (c+d x))^{3/2}}\right )}{16 a}+\frac {i \cos ^3(c+d x)}{8 d (a+i a \tan (c+d x))^{5/2}}\right )}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {13 \left (\frac {11 \left (\frac {3 \left (\frac {7 \left (\frac {5}{6} a \left (\frac {3 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sec (c+d x)}dx}{4 a}+\frac {i \cos (c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}\right )-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\right )}{4 a}+\frac {i \cos ^3(c+d x)}{6 d (a+i a \tan (c+d x))^{3/2}}\right )}{16 a}+\frac {i \cos ^3(c+d x)}{8 d (a+i a \tan (c+d x))^{5/2}}\right )}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3971

\(\displaystyle \frac {13 \left (\frac {11 \left (\frac {3 \left (\frac {7 \left (\frac {5}{6} a \left (\frac {3 \left (\frac {1}{2} a \int \frac {\sec (c+d x)}{\sqrt {i \tan (c+d x) a+a}}dx-\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}\right )}{4 a}+\frac {i \cos (c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}\right )-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\right )}{4 a}+\frac {i \cos ^3(c+d x)}{6 d (a+i a \tan (c+d x))^{3/2}}\right )}{16 a}+\frac {i \cos ^3(c+d x)}{8 d (a+i a \tan (c+d x))^{5/2}}\right )}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {13 \left (\frac {11 \left (\frac {3 \left (\frac {7 \left (\frac {5}{6} a \left (\frac {3 \left (\frac {1}{2} a \int \frac {\sec (c+d x)}{\sqrt {i \tan (c+d x) a+a}}dx-\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}\right )}{4 a}+\frac {i \cos (c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}\right )-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\right )}{4 a}+\frac {i \cos ^3(c+d x)}{6 d (a+i a \tan (c+d x))^{3/2}}\right )}{16 a}+\frac {i \cos ^3(c+d x)}{8 d (a+i a \tan (c+d x))^{5/2}}\right )}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

\(\Big \downarrow \) 3970

\(\displaystyle \frac {13 \left (\frac {11 \left (\frac {3 \left (\frac {7 \left (\frac {5}{6} a \left (\frac {3 \left (\frac {i a \int \frac {1}{2-\frac {a \sec ^2(c+d x)}{i \tan (c+d x) a+a}}d\frac {\sec (c+d x)}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}\right )}{4 a}+\frac {i \cos (c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}\right )-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\right )}{4 a}+\frac {i \cos ^3(c+d x)}{6 d (a+i a \tan (c+d x))^{3/2}}\right )}{16 a}+\frac {i \cos ^3(c+d x)}{8 d (a+i a \tan (c+d x))^{5/2}}\right )}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {13 \left (\frac {11 \left (\frac {3 \left (\frac {7 \left (\frac {5}{6} a \left (\frac {3 \left (\frac {i \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {2} d}-\frac {i \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}\right )}{4 a}+\frac {i \cos (c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}\right )-\frac {i \cos ^3(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\right )}{8 a}+\frac {i \cos ^3(c+d x)}{4 d \sqrt {a+i a \tan (c+d x)}}\right )}{4 a}+\frac {i \cos ^3(c+d x)}{6 d (a+i a \tan (c+d x))^{3/2}}\right )}{16 a}+\frac {i \cos ^3(c+d x)}{8 d (a+i a \tan (c+d x))^{5/2}}\right )}{20 a}+\frac {i \cos ^3(c+d x)}{10 d (a+i a \tan (c+d x))^{7/2}}\)

input
Int[Cos[c + d*x]^3/(a + I*a*Tan[c + d*x])^(7/2),x]
 
output
((I/10)*Cos[c + d*x]^3)/(d*(a + I*a*Tan[c + d*x])^(7/2)) + (13*(((I/8)*Cos 
[c + d*x]^3)/(d*(a + I*a*Tan[c + d*x])^(5/2)) + (11*(((I/6)*Cos[c + d*x]^3 
)/(d*(a + I*a*Tan[c + d*x])^(3/2)) + (3*(((I/4)*Cos[c + d*x]^3)/(d*Sqrt[a 
+ I*a*Tan[c + d*x]]) + (7*(((-1/3*I)*Cos[c + d*x]^3*Sqrt[a + I*a*Tan[c + d 
*x]])/d + (5*a*(((I/2)*Cos[c + d*x])/(d*Sqrt[a + I*a*Tan[c + d*x]]) + (3*( 
(I*Sqrt[a]*ArcTanh[(Sqrt[a]*Sec[c + d*x])/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d* 
x]])])/(Sqrt[2]*d) - (I*Cos[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/d))/(4*a) 
))/6))/(8*a)))/(4*a)))/(16*a)))/(20*a)
 

3.4.93.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3970
Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_S 
ymbol] :> Simp[-2*(a/(b*f))   Subst[Int[1/(2 - a*x^2), x], x, Sec[e + f*x]/ 
Sqrt[a + b*Tan[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 + b^2, 0 
]
 

rule 3971
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(n_), x_Symbol] :> Simp[b*(d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/ 
(a*f*m)), x] + Simp[a/(2*d^2)   Int[(d*Sec[e + f*x])^(m + 2)*(a + b*Tan[e + 
 f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && 
 EqQ[m/2 + n, 0] && GtQ[n, 0]
 

rule 3978
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)])^(n_), x_Symbol] :> Simp[b*(d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/( 
a*f*m)), x] + Simp[a*((m + n)/(m*d^2))   Int[(d*Sec[e + f*x])^(m + 2)*(a + 
b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b 
^2, 0] && GtQ[n, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n]
 

rule 3983
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(n_), x_Symbol] :> Simp[a*(d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/ 
(b*f*(m + 2*n))), x] + Simp[Simplify[m + n]/(a*(m + 2*n))   Int[(d*Sec[e + 
f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x 
] && EqQ[a^2 + b^2, 0] && LtQ[n, 0] && NeQ[m + 2*n, 0] && IntegersQ[2*m, 2* 
n]
 
3.4.93.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1056 vs. \(2 (252 ) = 504\).

Time = 11.08 (sec) , antiderivative size = 1057, normalized size of antiderivative = 3.44

method result size
default \(\text {Expression too large to display}\) \(1057\)

input
int(cos(d*x+c)^3/(a+I*a*tan(d*x+c))^(7/2),x,method=_RETURNVERBOSE)
 
output
1/491520/d/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)/(cos(d*x+c)+1)/(a*(1+I*tan(d 
*x+c)))^(1/2)/(1+I*tan(d*x+c))^3/a^3*(-256256*I*cos(d*x+c)*(-cos(d*x+c)/(c 
os(d*x+c)+1))^(1/2)-256256*I*cos(d*x+c)^2*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/ 
2)+106496*sin(d*x+c)*cos(d*x+c)^3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+36036 
0*I*cos(d*x+c)*arctan(1/2*(I*sin(d*x+c)-cos(d*x+c)-1)/(cos(d*x+c)+1)/(-cos 
(d*x+c)/(cos(d*x+c)+1))^(1/2))+106496*sin(d*x+c)*cos(d*x+c)^2*(-cos(d*x+c) 
/(cos(d*x+c)+1))^(1/2)-90090*I*sec(d*x+c)^3*(-cos(d*x+c)/(cos(d*x+c)+1))^( 
1/2)+45045*I*sec(d*x+c)^3*arctan(1/2*(I*sin(d*x+c)-cos(d*x+c)-1)/(cos(d*x+ 
c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+329472*(-cos(d*x+c)/(cos(d*x+c)+ 
1))^(1/2)*cos(d*x+c)*sin(d*x+c)+492492*I*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2 
)-90090*I*sec(d*x+c)^2*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-360360*arctan(1/ 
2*(I*sin(d*x+c)-cos(d*x+c)-1)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^ 
(1/2))*sin(d*x+c)+329472*sin(d*x+c)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-573 
44*I*cos(d*x+c)^4*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+492492*I*sec(d*x+c)*( 
-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-180180*tan(d*x+c)*arctan(1/2*(I*sin(d*x+ 
c)-cos(d*x+c)-1)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-300300 
*tan(d*x+c)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+180180*I*arctan(1/2*(I*sin( 
d*x+c)-cos(d*x+c)-1)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-57 
344*I*cos(d*x+c)^3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+180180*tan(d*x+c)*se 
c(d*x+c)*arctan(1/2*(I*sin(d*x+c)-cos(d*x+c)-1)/(cos(d*x+c)+1)/(-cos(d*...
 
3.4.93.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 322, normalized size of antiderivative = 1.05 \[ \int \frac {\cos ^3(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx=\frac {{\left (-45045 i \, \sqrt {\frac {1}{2}} a^{4} d \sqrt {\frac {1}{a^{7} d^{2}}} e^{\left (10 i \, d x + 10 i \, c\right )} \log \left (-\frac {3003 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (i \, a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{7} d^{2}}} - i\right )} e^{\left (-i \, d x - i \, c\right )}}{8192 \, a^{3} d}\right ) + 45045 i \, \sqrt {\frac {1}{2}} a^{4} d \sqrt {\frac {1}{a^{7} d^{2}}} e^{\left (10 i \, d x + 10 i \, c\right )} \log \left (-\frac {3003 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (-i \, a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{7} d^{2}}} - i\right )} e^{\left (-i \, d x - i \, c\right )}}{8192 \, a^{3} d}\right ) + \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-1280 i \, e^{\left (14 i \, d x + 14 i \, c\right )} - 25600 i \, e^{\left (12 i \, d x + 12 i \, c\right )} + 11275 i \, e^{\left (10 i \, d x + 10 i \, c\right )} + 56665 i \, e^{\left (8 i \, d x + 8 i \, c\right )} + 31094 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 12952 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 3312 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 384 i\right )}\right )} e^{\left (-10 i \, d x - 10 i \, c\right )}}{491520 \, a^{4} d} \]

input
integrate(cos(d*x+c)^3/(a+I*a*tan(d*x+c))^(7/2),x, algorithm="fricas")
 
output
1/491520*(-45045*I*sqrt(1/2)*a^4*d*sqrt(1/(a^7*d^2))*e^(10*I*d*x + 10*I*c) 
*log(-3003/8192*(sqrt(2)*sqrt(1/2)*(I*a^3*d*e^(2*I*d*x + 2*I*c) + I*a^3*d) 
*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^7*d^2)) - I)*e^(-I*d*x - I*c) 
/(a^3*d)) + 45045*I*sqrt(1/2)*a^4*d*sqrt(1/(a^7*d^2))*e^(10*I*d*x + 10*I*c 
)*log(-3003/8192*(sqrt(2)*sqrt(1/2)*(-I*a^3*d*e^(2*I*d*x + 2*I*c) - I*a^3* 
d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^7*d^2)) - I)*e^(-I*d*x - I* 
c)/(a^3*d)) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(-1280*I*e^(14*I*d 
*x + 14*I*c) - 25600*I*e^(12*I*d*x + 12*I*c) + 11275*I*e^(10*I*d*x + 10*I* 
c) + 56665*I*e^(8*I*d*x + 8*I*c) + 31094*I*e^(6*I*d*x + 6*I*c) + 12952*I*e 
^(4*I*d*x + 4*I*c) + 3312*I*e^(2*I*d*x + 2*I*c) + 384*I))*e^(-10*I*d*x - 1 
0*I*c)/(a^4*d)
 
3.4.93.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**3/(a+I*a*tan(d*x+c))**(7/2),x)
 
output
Timed out
 
3.4.93.7 Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 5821 vs. \(2 (236) = 472\).

Time = 0.62 (sec) , antiderivative size = 5821, normalized size of antiderivative = 18.96 \[ \int \frac {\cos ^3(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx=\text {Too large to display} \]

input
integrate(cos(d*x+c)^3/(a+I*a*tan(d*x+c))^(7/2),x, algorithm="maxima")
 
output
-1/1966080*(40*(cos(1/5*arctan2(sin(10*d*x + 10*c), cos(10*d*x + 10*c)))^2 
 + sin(1/5*arctan2(sin(10*d*x + 10*c), cos(10*d*x + 10*c)))^2 + 2*cos(1/5* 
arctan2(sin(10*d*x + 10*c), cos(10*d*x + 10*c))) + 1)^(3/4)*((79*(-I*sqrt( 
2)*cos(10*d*x + 10*c) - sqrt(2)*sin(10*d*x + 10*c))*cos(1/5*arctan2(sin(10 
*d*x + 10*c), cos(10*d*x + 10*c)))^2 + 79*(-I*sqrt(2)*cos(10*d*x + 10*c) - 
 sqrt(2)*sin(10*d*x + 10*c))*sin(1/5*arctan2(sin(10*d*x + 10*c), cos(10*d* 
x + 10*c)))^2 + 837*(-I*sqrt(2)*cos(1/5*arctan2(sin(10*d*x + 10*c), cos(10 
*d*x + 10*c)))^2 - I*sqrt(2)*sin(1/5*arctan2(sin(10*d*x + 10*c), cos(10*d* 
x + 10*c)))^2 - 2*I*sqrt(2)*cos(1/5*arctan2(sin(10*d*x + 10*c), cos(10*d*x 
 + 10*c))) - I*sqrt(2))*cos(4/5*arctan2(sin(10*d*x + 10*c), cos(10*d*x + 1 
0*c))) + 158*(-I*sqrt(2)*cos(10*d*x + 10*c) - sqrt(2)*sin(10*d*x + 10*c))* 
cos(1/5*arctan2(sin(10*d*x + 10*c), cos(10*d*x + 10*c))) - 837*(sqrt(2)*co 
s(1/5*arctan2(sin(10*d*x + 10*c), cos(10*d*x + 10*c)))^2 + sqrt(2)*sin(1/5 
*arctan2(sin(10*d*x + 10*c), cos(10*d*x + 10*c)))^2 + 2*sqrt(2)*cos(1/5*ar 
ctan2(sin(10*d*x + 10*c), cos(10*d*x + 10*c))) + sqrt(2))*sin(4/5*arctan2( 
sin(10*d*x + 10*c), cos(10*d*x + 10*c))) - 79*I*sqrt(2)*cos(10*d*x + 10*c) 
 - 79*sqrt(2)*sin(10*d*x + 10*c))*cos(7/2*arctan2(sin(1/5*arctan2(sin(10*d 
*x + 10*c), cos(10*d*x + 10*c))), cos(1/5*arctan2(sin(10*d*x + 10*c), cos( 
10*d*x + 10*c))) + 1)) + (-49*I*sqrt(2)*cos(10*d*x + 10*c) - 1155*I*sqrt(2 
)*cos(4/5*arctan2(sin(10*d*x + 10*c), cos(10*d*x + 10*c))) + 3264*I*sqr...
 
3.4.93.8 Giac [F]

\[ \int \frac {\cos ^3(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{3}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {7}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^3/(a+I*a*tan(d*x+c))^(7/2),x, algorithm="giac")
 
output
integrate(cos(d*x + c)^3/(I*a*tan(d*x + c) + a)^(7/2), x)
 
3.4.93.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^3}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{7/2}} \,d x \]

input
int(cos(c + d*x)^3/(a + a*tan(c + d*x)*1i)^(7/2),x)
 
output
int(cos(c + d*x)^3/(a + a*tan(c + d*x)*1i)^(7/2), x)